88 research outputs found

    Elliptic divisibility sequences and undecidable problems about rational points

    Full text link
    Julia Robinson has given a first-order definition of the rational integers Z in the rational numbers Q by a formula (\forall \exists \forall \exists)(F=0) where the \forall-quantifiers run over a total of 8 variables, and where F is a polynomial. This implies that the \Sigma_5-theory of Q is undecidable. We prove that a conjecture about elliptic curves provides an interpretation of Z in Q with quantifier complexity \forall \exists, involving only one universally quantified variable. This improves the complexity of defining Z in Q in two ways, and implies that the \Sigma_3-theory, and even the \Pi_2-theory, of Q is undecidable (recall that Hilbert's Tenth Problem for Q is the question whether the \Sigma_1-theory of Q is undecidable). In short, granting the conjecture, there is a one-parameter family of hypersurfaces over Q for which one cannot decide whether or not they all have a rational point. The conjecture is related to properties of elliptic divisibility sequences on an elliptic curve and its image under rational 2-descent, namely existence of primitive divisors in suitable residue classes, and we discuss how to prove weaker-in-density versions of the conjecture and present some heuristics.Comment: 39 pages, uses calrsfs. 3rd version: many small changes, change of titl

    Division-ample sets and the Diophantine problem for rings of integers

    Get PDF
    We prove that Hilbert’s Tenth Problem for a ring of integers in a number field K has a negative answer if K satisfies two arithmetical conditions (existence of a so-called division-ample set of integers and of an elliptic curve of rank one over K). We relate division-ample sets to arithmetic of abelian varieties

    Non-representationalist cognitive science and realism

    No full text
    corecore